

EGFR AND SMAD4 NEGATIVELY CORRELATED IN THE PROGRESSION OF GALLBLADER CANCER IN EASTERN INDIAN PATIENTS

coasta'

ESTD 2021

FOUNDANDA

AND

ARINE

Authors: <u>Sounetra Choudhury^{1,5},</u> Sandip Ghosh², Prosenjeet Chakraborty¹, Sayari Pal¹, Koustuv Ghosh¹, Subhankar Saha³, Jitesh Midha⁴, Vinu Sankar³, Abhisek Mohata³, Bitan Kumar Chattopadhyay⁴, Shibajyoti Ghosh³, Soumen Das², Biswarup Basu² and Nilabja Sikdar^{1,5*}

Affiliations:

¹Human Genetics Unit, Indian Statistical Institute, Kolkata, ²Department of Neuroendocrinology and Experimental Hematology, Chittaranjan National Cancer Research Institute, Kolkata, ³Department of General Surgery, Medical College and Hospital, Kolkata, ⁴Department of General Surgery, SSKM Hospital and IPGME&R, Kolkata, ⁵Estuarine and Coastal Studies Foundation, Howrah, India.

<text></text>		 MDM2, AND MYC. Most frequently deleted tumor suppressor genes in GBC: <i>CDKN2A</i>, <i>CDKN2B</i>. Most frequently dysregulated genes in GBC: <i>EGFR</i>, <i>ERBB2</i>, <i>CDKN2A</i>, <i>MUC1</i>, <i>MUC5A</i>, <i>p16</i>, <i>Cyclin E</i>, <i>Cyclin D1</i>. Loss of heterozygosity (LOH) has been reported in various chromosomal regions in GBC including 2p, 3p, 5q, 7q, 8p, 9p and 22q. Single nucleotide polymorphisms (SNPs) in genes <i>ABCB1</i>, <i>ABCB4</i>, <i>ABCG8</i>, <i>DCC</i>, etc. Epigenetic factors, mainly hypermethylation induces silencing of TSGs like <i>SHP1</i>, <i>CDH13</i>, <i>CDH1</i>, <i>APC</i>, etc in GBC. High degree of microsatellite instability infrequently observed in GBC (Weighted average = 3.5%). All genetic risk factors vary widely across different geographical and ethnic backgrounds. 	 <i>CCND1 - CCND1</i> (Cyclin D1) expression is a key mediator in the transition from G1 to S phase of the cell cycle. <i>MYC - MYC</i> encodes for transcription factors that activate expression of many pro-proliferative genes. <i>CDKN2A</i> – Inhibits interaction of CDKs with Cyclin D1. <i>SMAD4</i> - Arrests cell cycle at the G1/S cell-cycle checkpoint. <i>KRAS</i> - Encodes protein K-ras, which relays proliferative signals from outside the cell to cell's nucleus, and mutated K-ras have been implicated in many cancers.
 AIMS AND OBJECTIVES To study the differential expression of 6 frequently dysregulated genes in GBC in East Indian population. To estimate the amplification pattern of <i>ERBB2/Her2-neu</i> gene. To estimate the mutational frequency of <i>KRAS</i> codon 12 in gallstone disease (GSD) and GBC patient samples by different techniques. To draw a correlation between the different gene expression patterns, and associated clinico-pathological parameters. To validate <i>EGFR-SMAD4</i> expression correlation, <i>ERBB2</i> amplification, and <i>KRAS</i> codon 12 mutational frequency in independent GBC patient cohort. To validate protein expression of Egfr, Smad4 and Erbb2 from tissue blocks of patient samples. 	 AGBC tissue alongwith adjacent normal samples and GSD tissue samples were collected from 2 different government hospitals in Kolkata megacity followed by IRB Institutional ethical rules. Real Time PCR analysis conducted to study differential gene expression. Distributions of 2^{-∆ct} values for the respective genes were checked by Anderson–Darling test for both matched tumor and adjacent normal groups. Wilcoxon signed rank test was performed for statistical analysis. Taqman Copy Number Assay was done to study <i>ERBB2</i> amplification. Egfr, Smad4 and Erbb2 protein expressions were estimated by Immunohistochemistry methods. Gene expression data and clinico-pathological data were correlated with Pearson's correlation. RFLP, Allele Specific PCR and Sanger Sequencing were conducted to detect <i>KRAS</i> codon 12 mutations. 	DIFFERENTIAL GENE (CCND1, MYC and EGFR) EXPRESSION STATUS IN GBC SAMPLES	DIFFERENTIAL GENE (ERBB2, SMAD4 and CDKN2A) EXPRESSION STATUS IN GBC SAMPLES
CORRELATION STUDIES CCND MY ERBB CDK SMA 1 C EGFR 2 N2A D4	IMMUNOHISTOCHEMICAL STUDIES OF EGFR AND SMAD4 EXPRESSION IN GBC PATIENT SAMPLES	ERBB2/HER2-NEU GENE AMPLIFICATION AS OBSERVED BY TAQMAN COPY NUMBER ASSAY	IMMUNOHISTOCHEMICAL STUDIES OF ERBB2 EXPRESSION IN GBC PATIENT SAMPLES

